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Detecting periodicity in experimental data using linear modeling techniques
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Fourier spectral estimates and, to a lesser extent, the autocorrelation function are the primary tools to detect
periodicities in experimental data in the physical and biological sciences. We propose a method which is more
reliable than traditional techniques, and is able to make clear identification of periodic behavior when tradi-
tional techniques do not. This technique is based on an information theoretic reduction of linear~autoregres-
sive! models so that only the essential features of an autoregressive model are retained. These models we call
reduced autoregressive models~RARM!. The essential features of reduced autoregressive models include any
periodicity present in the data. We provide theoretical and numerical evidence from both experimental and
artificial data to demonstrate that this technique will reliably detect periodicities if and only if they are present
in the data. There are strong information theoretic arguments to support the statement that RARM detects
periodicities if they are present. Surrogate data techniques are used to ensure the converse. Furthermore, our
calculations demonstrate that RARM is more robust, more accurate, and more sensitive than traditional spectral
techniques.@S1063-651X~99!08501-3#

PACS number~s!: 02.50.Wp, 02.60.Gf, 07.05.Tp, 02.50.Vn
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I. INTRODUCTION

Periodic and nearly periodic behavior is a common f
ture of many biological and physical systems and there e
several widely used techniques to estimate the period
behavior, for example, spectral estimation@1#, autocorrela-
tion @1#, spectrographs, band pass~comb! filters @2#, and
wavelet transforms@3,4#. All of these standard technique
either employ, are related to, or are a generalization of, F
rier series.

In this paper we propose an alternative method of det
ing periodicity that is not so closely related to Fourier seri
This technique applies ideas from information theory to l
ear autoregressive models of time series to extract evide
of periods.

The basic principle is the following. Given a time seri
$yt% t51

N one can propose a linear autoregressive mo
AR(n) by

yt5a1yt211a2yt221a3yt231•••1anyt2n1ett

t5n11,n12, . . . ,N, ~1!

whereet is assumed to be independent and identically d
tributed random variables, which are interpreted as the m
eling errors@1,5#. Under these assumptions the maximu
likelihood estimate of the parametersa1 ,a2 , . . . ,an can be
written in terms of a covariance function, and is therefo
related to the autocorrelation function and Fourier spectr
It is common practice to determine the optimal sizen of the
model by using either the Akaike@6# or the Schwarz@7#
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information criteria; this is done to avoid overfitting of th
time series@8#. It has recently been observed that a furth
optimization of an AR(n) model may be possible by deletin
some of the terms to obtain a model

yt5a01a1yt2 l 1
1a2yt2 l 2

1a3yt2 l 3
1•••1akyt2 l k

1et ,
~2!

where

1< l 1, l 2, l 3,•••, l k<n, l iPZ1, i 51,2,3, . . . ,k.

The hope is to obtain a model that fits the time series equ
well, but has far fewer parameters. Profound theoretical
guments, which are a codification of Occam’s razor, imp
that if a reduced autoregressive model~RARM! is suitably
optimized, then it is superior to an equivalent autoregress
model AR(n). The key principle of this paper is that if on
has an optimized RARM, that is, the RARM that has be
reduced to only the essential terms, then the parame
l 1 ,l 2 ,l 3 , . . . ,l k , often called lags, provide information
about the periodicity of the time series.

A practical procedure for obtaining an optimal RARM h
been described by Judd and Mees@9#. This procedure was
introduced in the more general context of nonlinear mod
ing, but in the following section we describe briefly the u
derlying theory in the context of RARM.

The major part of this paper is aimed at presenting e
dence that shows that examining the lags of an optim
RARM provides a more robust and accurate means of det
ing periods in time series than traditional spectral techniqu
That is, the proposed technique unambiguously identifies
riodicities even when spectral methods fail to do so, a
furthermore, it does not falsely suggest the presence of p
ods when none are present. The evidence presented is a
bination of theoretical argument and numerical procedu
which are illustrated with both artificial and experiment
data.

An important numerical procedure that will be used
establish that the proposed technique does not falsely id
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1380 PRE 59MICHAEL SMALL AND KEVIN JUDD
tify periods issurrogate data analysis. The principle of sur-
rogate data analysis is the following. From experimental d
one generates artificial data that are ‘‘similar’’ to the expe
mental data and satisfy a given hypothesis. One then ca
lates a test statistic for each surrogate data set, and h
obtains an ensemble of statistic values that estimate the
tribution of the test statistic under the assumption that
original data are consistent with the given hypothesis. O
then compares the statistic value of the original data with
estimated distribution of the surrogates. If the data have
atypical statistic value, then the hypothesis will be reject
otherwise it should be accepted. In this paper we employ
technique to ensure that RARM procedures do not spurio
identify periodicities in temporally uncorrelated surroga
data.

Minimum description length

The criteria we use for determining the optimal RARM
the minimum description length. Occam’s razor recomme
that the best description of a phenomenon is the sho
description. This principle can be made rigorous using inf
mation theory, and the principle was independently dev
oped by Wallace@10# and Rissanen@11#.
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Operationally the principle is applied as follows. Suppo
you have a time series$yt% t51

N given to a certain fixed accu
racy and that you wish to communicate the data to a c
league. To send the raw data would require a certain num
of bits. Alternatively, one could build a predictive model,
the form ~2!, for example, and then send the model para
eters~to some precision!, the initial l k observations, and the
differences between the model’s predictions and actual
servations. Given this information, your colleague can rec
struct the original data. If the model of the time series
good, then the total number of bits required for paramet
initial conditions, and prediction errors is less than the nu
ber of bits of raw data, because the differences between
predicted and actual observations are smaller than the ob
vations. The total number of bits sent in the second cas
called thedescription length, and the model that achieves th
minimum description length is the one recommended by
application of Occam’s razor. The dogma is that this mo
achieves the best prediction of the data without overfittin

In practice it is usually sufficient to estimate the descr
tion length of a model, rather than calculate it in detail. A
estimate will usually have the form
~description length!'~number of data!3 log~sum of squares of prediction errors!

1~penalty for number and accuracy of parameters!.
-

the
Following Judd and Mees@9#, the description length of a
RARM can be estimated as follows. Given a time ser
$yt% t51

N , define a set of vectors$Vi% i 51
n by

V05~1,1, . . . ,1!T,

V15~yn , . . . ,yN21!T,

V25~yn21 , . . . ,yN22!T,

A

Vj5~yn2 j 11 , . . . ,yN2 j !
T,

A

Vn5~y1 , . . . ,yN2n!T,

and define

y5~yn11 , . . . ,yN!T.

Observe that if the model~2! is appropriate for the time
series, one can write

y5(
i 51

k

aiVl i
1e5VBaB1e, ~3!
s
whereB5( l 1 ,l 2 , . . . ,l k),VB5@Vl 1

uVl 2
u•••uVl k

# is a matrix,

and aB5(a1 ,a2 , . . . ,ak)
T. The maximum likelihood esti-

mates ofaB , that is, the values that minimizeeTe, are given
by

aB5~VB
TVB!21VB

Ty.

Now each parameteraj must be sent to some precisiond j ,
that is, the maximum likelihood estimate ofaj is ‘‘rounded-
off’’ by an amountd j . It can be shown@9# that the optimal
precisionsd5(d1 ,d2 , . . . ,dk), that is, the round-off for
eachaj that gives the minimum description length, satisfy

~Qd! j51/d j ,

where

Q5
2NVB

TVB

~aBVB2y!T~aBVB2y!
.

Consequently, it can be shown@9# that the approximate de
scription length of the RARM~2! is

N

2 S 11 ln
2peTe

N D1S 1

2
1 lng D k2(

j 51

k

lnd j , ~4!

whereg is a constant depending on the overall scale of
data.
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FIG. 1. The horizontal axis is the breath number — each datum in this time series corresponds to a single breath. The vertic
derived from the output from the analog to digital converter~proportional to cross-sectional area measured by inductance plethysmogr
arbitrary units!. For each breath the minimum and maximum values over that breath were calculated and the difference recorded.
set consists of 762 points recorded from a 21 week old male during 24 min of continuous stage-2 sleep. This study had approva
ethics committee of Princess Margaret Hospital. The parents of this subject were informed of the procedure, and its purpose, and
consent. The recording took place during a scheduled overnight sleep study at Princess Margaret Hospital.
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Armed with this estimate of the description length of
RARM, one can search over all combinations of lagsB
5( l 1 ,l 2 , . . . ,l k) to obtain the optimal RARM, howeve
Judd and Mees@9# describe a fast and efficient method
doing this optimization.

II. DETECTING PERIODICITY USING OPTIMAL RARM

A function f is periodic with periodt if f (t)5 f (t1t) for
all t. A time series~assumed stationary! has an~approximate!
periodicity of periodt if yt'yt1t for all t, or, equivalently,
the autocorrelationr has a local maximum att. The reduced
autoregressive model~2! predicts the current value of a tim
seriesyt as a weighted average of the previous values, tha
at the time stepsl 1 ,l 2 , . . . , andl k previous tot. If a time
series has periodic behavior, then the lagsl 1 ,l 2 , . . . ,l k
should be~multiples of! the periods.

We claim that one can detect in time series a periodic
of period < nmax by the following procedure, called th
RARM procedure. Forn50,1,2,3, . . . ,nmax, build optimal
reduced autoregressive models of the form~2! using the al-
gorithm described by Judd and Mees@9#. For each model in
this sequence calculate its description length~4! and take as
the overall optimal model that model with the smallest d
scription length. We claim that if the overall optimal RARM
is nontrivial, then the lagsl 1 ,l 2 , . . . ,l k should be~multiples
of! the periods< nmax in the original time series if the time
series is sufficiently long.

In order to establish our claim, we must demonstrate t
~i! if the time series contains a period,then the RARM pro-
cedure detects this periodic behavior, and~ii ! if the RARM
procedure detects a period,thenthere is periodic behavior in
the time series. In Sec. II A we provide a theoretical arg
ment to establish the forward implication~i!. In Sec. II B we
discuss an essential procedure for ensuring~ii !.

A. Forward implication „i…

The argument to establish the forward implication p
ceeds as follows. First, we observe that a period in a t
series will ~regardless of whether it is linear or nonlinea!
produce a local maximum in the autocorrelation functi
r(t). Next it is shown below that, in the optimization of
RARM of given maximum sizen, the criterion for inclusion
of a particular termajyt2 l j

in Eq. ~2! is closely related to the

magnitude of the autocorrelation atl j ,r( l j ). Hence, ifn is
large enough, the optimal RARM will include a term corr
s,

y

-

at

-

-
e

sponding to this periodicity. Rissanen’s minimum descr
tion length criterion guarantees that, provided the time se
is sufficiently long, this will always be the case and so t
RARM procedure will always detect periods that are pres
in a time series, provided the time series is sufficiently lo

The remainder of this section elaborates on the detail
this argument. A periodt in a time series$yt% t51

N of N scalar
measurements is a strong positive correlation between va
separated byt time steps, i.e., the autocorrelation

r~t!5
~y2 ȳ!T~Vt2 ȳ!

(
n11

N

~y2 ȳ!2

~5!

has a local maximum att. Without loss of generality we
may assume thatȳ50, and therefore Eq.~5! reduces to

r~t!5
Vt

Ty

yTy
. ~6!

Let the set of lags for the optimal RARM of sizek be de-
noted byBk5( l 1

(k) ,l 2
(k) , . . . ,l k

(k)). The vectorBk uniquely
determines the least-squares model

y5(
i 51

k

ai
~k!Vl

i
~k!1e.

Define

L~t!5UVt
Ty2(

i 51

k

ai
~k!Vt

TVl
i
~k!U

5yTyUr~t!2(
i 51

k

ai
~k!r~t2 l i

~k!!U. ~7!

According to the algorithm of Judd and Mees@9#, given Bk

andaB
(k) , the next best term to add to the model has the

t that maximizesL(t). However, identity~7! implies that
such at is a local maximum ofr(t).

Rissanen’s minimum description length ensures that,
sufficiently largeN, ‘‘if there is any machinery behind the
data, which restricts the future observation in a similar m
ner as the past and which can be captured by the sele
class of parametric functions, then we will find that mach
ery’’ @11#. The argument in the preceding paragraphs de
onstrates that RARM are a sufficiently broad class of pa
metric functions to capture ‘‘machinery’’ behind the dat
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FIG. 2. Spectral techniques: Estimates of the power spectrum~arbitrary units! and autocorrelation function for the data illustrated in F
1. The RARM detected periodic motion over a period of six data points, see Eq.~8!. A vertical dot-dashed line marks the location of perio
6 behavior in both the frequency~power spectrum! and time~autocorrelation! domain. A peak in the autocorrelation function correspon
exactly with the period 6 behavior detected by RARM. The power spectrum has a peak close to a frequency of 621'0.166 667. A period
of 6 is the closest integer value to the peak evident at this location in the power spectrum. While both power spectra and autoc
detect behavior with a period of 6, these results are not as conclusive as the RARM algorithm.
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including observed periodicities. Thus, if periodicity
present in the data, then RARM techniques will detect it
provided N is sufficiently large. This ensures the forwa
implication ~i!.

B. Reverse implication„ii …: Surrogate data techniques

In order to establish that the RARM technique does
falsely identify a period when none is present, the numer
procedure of surrogate data analysis can be used. The
nique of surrogate data was originally introduced by The
and colleagues@12#. They suggest three surrogate generat
techniques to address three different hypotheses about a
series, but for our purposes we only use Theiler’s algorit
0 surrogates.

In the present case we are interested in whether a
series contains periodicities, or said in another way, we w
t
al
ch-
r
n
me

e
h

to test the null hypothesis that the time series contains
periodicities, that is, has no temporal correlation. Theile
algorithm 0 generates surrogate time series having no t
poral correlation by simply shuffling the original time serie
or put another way, the surrogates are i.i.d.~independent and
identically distributed! noise having the same rank distribu
tion as the original time series@13#.

Our proposal is to use optimal RARM as the test for p
riodicity, that is, if the optimal RARM is nontrivial in tha
k.0 in Eq. ~2!, then periods are present in the time seri
To believe the validity of this test, one must require that
the optimal RARM detects a period in a time series, then
must not detect any period in algorithm 0 surrogates@13,14#.
This surrogate test must be applied to each data set for w
an optimal RARM has been constructed to ensure that
structure detected ineach data set is genuine. That is, w
rd
pectrum
ior. The
FIG. 3. Artificial data: A data set of 764 realization of the process described by Eq.~9! with normal observational noise, standa
deviation 1. This linear model is of the same form as that predicted from the model of the data in Fig. 1. Also shown is the power s
~arbitrary units! and autocorrelation estimate for this data set. For this data set RARM gave a clear indication of period 6 behav
dot-dashed line on the power spectrum and autocorrelation function corresponds to the period of 6 detected by RARM.
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FIG. 4. Artificial data: Data from a reduce
autoregressive of the same form as that predic
from the model of the data in Fig. 1. This data s
consists of 5000 realizations of Eq.~9! with ob-
servational noise, standard deviation 2. Al
shown is the power spectrum~arbitrary units! and
autocorrelation estimate for this data set. For th
data set RARM gave a clear indication of perio
6 behavior. The dot-dashed line on the pow
spectrum and autocorrelation function corr
sponds to the period of 6 detected by RARM.
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propose that an algorithm 0 surrogate test is a necessary
of the procedure of detecting periodicity using an optim
RARM. If RARM methods identify periodicity in the surro
gates, then this is clear evidence of false identification
periodicity in the data. However, if the RARM algorithm
detects no periodicity in the surrogates, then periodicity id
tified in the original data is genuine. To ensure that the
verse implication~ii ! holds, one need only apply an algo
rithm 0 surrogate calculation.

III. CALCULATIONS

In this section we demonstrate with artificial and expe
mental data, that RARM detects periodic behavior~i! if and
~ii ! only if it is present in the original time series. To dem
onstrate that RARM detects periodic behaviorif it is present
in the data, we construct artificial data contaminated w
noise and demonstrate the effectiveness of the RARM a
rithm. We compare the RARM results to traditional Four
spectral and autocorrelation techniques. We repeat these
culations for some experimental data comparing the RAR
algorithm and traditional techniques. To demonstrate that
RARM algorithm detects periodic behavioronly if it is
present in the data, we apply the method of surrogate da

In Sec. III A we describe the application of these tec
niques to detect periodicities in recordings of infant resp
tory patterns during natural sleep. Section III B applies th
methods to artificial data sets to demonstrate the effect
ness of these techniques compared to traditional meth
art
l

f
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h
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-
e
e-
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Section III C describes the application of these same m
ods to global climatic data.

A. Infant respiratory data

Using inductance plethysmography, we have collec
measurements of the cross-sectional area of the abdome
infants during natural sleep. From these measurements
extract a measure that can be related to the breath vol
@15#. Figure 1 gives an example of data collected in this w

We applied our RARM procedure to the data illustrated
Fig. 1 and obtained a model of the form

yt5a01a1yt211a2yt261et , ~8!

where a0'2.945 206,a1'0.300 739, anda2'0.202 056.
Figure 2 shows the result of an analysis of this data set w
a fast Fourier transform algorithm~MATLAB’s spectrum
command! and an estimate of the autocorrelation functio
Both these techniques yield small peaks at the same v
~that is, 6) and are consistent with the results of our RAR
algorithm. However, the results are not as unambiguous
the results of the RARM algorithm. That is, the RARM d
tects a periodicity that is not strong enough to be unambi
ously identified by spectral methods.

For many time series of breath size@16# we have com-
puted autocorrelation and Fourier spectral estimates.
have applied our RARM algorithm to each data set and co
pared this to the result of applying traditional techniques. F
-

e

FIG. 5. Global air temperature: Monthly glo
bal air temperature measured as deviation~in de-
grees Celsius! from monthly mean temperatur
for the period 1856–1997 (1704 data!.
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FIG. 6. Spectral techniques: Estimates of the power spectrum and autocorrelation function for the data illustrated in Fig. 5. Th
Fig. 5 were linearly detrended before calculating Fourier spectrum and autocorrelation. The RARM detected periodic motion over
of 7, 24, and 45 months. A vertical dot-dashed line marks the location of period 7, 24, and 45 behavior in both the frequency
domain. A peak in the autocorrelation function corresponds exactly with the period 24 and 45 behavior detected by RARM. Th
spectrum has a peak close to a frequency of 4521'0.0222. While both power spectra and autocorrelation detect behavior with a peri
24 and 45, these results are not as conclusive as the RARM algorithm.
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these data the period of periodic behavior detected by
RARM algorithm is consistent with the periods detected
autocorrelation. That is, if RARM detects periodic behavi
then it is of the same period as that detected by the auto
relation estimate~if the autocorrelation detects periodic b
havior!. Furthermore, if RARM does not detect periodic b
havior, then neither does the autocorrelation estimate.
traditional techniques will often fail to detect periodic beha
ior when the RARM algorithm does detect it.

We have provided experimental evidence that the RAR
technique detects periodic behavior when it does occur. N
we will demonstrate that the RARM technique does not le
to spurious identification of periodic behavior. That is, w
will show that if the RARM algorithm detects periodic be
havior,thenthere is periodic behavior in the data. To do th
we apply a surrogate data algorithm which will ensure t
false indications of periodicities can always be identified.

For the data illustrated in Fig. 1, none of the 100 sur
gates generated by shuffling the data exhibited periodic
havior of any period. This calculation was repeated with
other 48 data sets@16#. In all 49 cases the RARM failed to
detect periodic behavior in the surrogate data in at leas
~of 100) surrogates of each data set. This indicates that
RARM algorithm does not identify periodicities not prese
in the data.

B. Artificial data

In this section we use the optimal RARM from Sec. III
as a basis for generating noisy artificial data with a kno
periodicity. From Eq.~8! we use the model

yt5a01a1yt211a2yt261et ~9!

~where a0'2.945 206,a1'0.300 739, anda2'0.202 056,
as above! to generate an artificial data sety. To these data we
add observational noisee t and apply the above analysis
the seriesz, zt5yt1e t . Figure 3 demonstrates the result
this technique for an artificial data set of the same length
the data and normal observational noise with standard de
tion 1 @et ,e t;N(0,1)]. Figure 4 is the result of the sam
technique for a longer data set (5000 data points! and more
observational noise@et;N(0,1) ande t;N(0,2)]. In both
cases, RARM clearly identified periodic behavior with p
e
y
,
r-
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riod 6. For the time series shown in Figs. 3 and 4 we c
structed 100 algorithm 0 surrogates. None of them exhib
periodicity detected by RARM.

The traditional Fourier spectral and autocorrelation te
niques identify the same period as the RARM technique
the shorter but less noisy data illustrated in Fig. 3. Howev
for the data shown in Fig. 4, the RARM technique has ide
tified periodicities that are not obvious from traditional tec
niques. Furthermore, it should be noted that in all cases
results of the autocorrelation and spectral methods are
clear cut. For reasonably long but extremely noisy data s
the RARM algorithm still provides a decisive and accura
estimate of the period of periodic behavior present in
data.

C. Global climatic data

In this section we describe the application of these te
niques with noisy physical data. The time series we use h
is monthly deviations from monthly mean global air tem
peratures over the period 1856–1997@17#. These global air
temperature measurements are obtained by averaging o
vations at many spatially separated sites on the globe. Fig
5 shows the complete data set. A more detailed discussio
these data may be found in@18#. Analysis using the method
described in this paper demonstrates the presence of per
fluctuation over periods of 7 months, 2 years, and 45 mon
@19#. Fourier spectral and autocorrelation estimates were
applied~after detrending this time series! and the results are
illustrated in Fig. 6. From 100 algorithm 0 surrogate
RARM did not detect periodicity in 99 of them. These resu
demonstrate the presence of genuine periodic fluctuatio
this time series and that the fluctuation is difficult to dete
with traditional techniques. An advantage of the RAR
technique is that no detrending is required. The results of
RARM algorithm are not effected by trends or nonstation
ity.

IV. CONCLUSIONS

We have provided theoretical and experimental evide
to support the use of RARM techniques to detect perio
behavior in noisy experimental time series. The concep
minimum description length ensures that a RARM built w
an MDL modeling criterion will detect any periodicitie
present in the data. We provided numerical evidence us
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experimental and artificial data to support this. Moreov
these calculations have demonstrated that the RARM a
rithm provides an accurate and decisive method of detec
periodicities that is more sensitive than Fourier spectrum
autocorrelation methods.

By applying surrogate data techniques, we have dem
strated that the RARM algorithm did not identify periodic
ties in temporally uncorrelated surrogates. This is strong
perimental evidence that the RARM algorithm is robu
against identification of false periodicities. It does not ide
tify behavior not present in the original system. Howev
this result has only been supported by numerical evide
and does not imply true identification with arbitrary data.
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guard against false positives, we recommend application
surrogate data tests, as discussed in this paper. Period
detected using RARM is genuine provided RARM detects
periodicity in i.i.d. noise surrogates.
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